

Add value. Inspire trust.

Test Report No.: 76123843-3 Blind Spot Information System for the Detection of Bicycles With selected test cases following UN ECE-R151 of 13.01.2020

This test report covers the evaluation of a blind spot information system for motor vehicles according to the version of UN-ECE R151, ECE/TRANS/505/Rev.3/Add.150 of 13.01.2020 plus Amendment 1 of 05.11.2020, Amendment 2 of 02.07.2021 and Amendment 3 of 30.08.2022.

The blind spot information system (BSIS) is a system that informs the driver of a possible collision with a bicycle near side.

System 1 under Test (Yellow):	- Shield + 52-degree look back / AWS4_4.18.11_3.4.1_0.1 - Shield + 150-degree BSIS look front / AWS4_4.20.5_RC7_v8.2.24
System 2 under Test (White):	- Shield + 150-degree BSIS / AWS4_4.20.5_RC7_v8.2.24 - Shield + 150-degree MOIS / AWS4_4.20.5_RC7_v8.2.24

Test vehicle: Ford Transit Mk7

Des Mature

Munich, 19.12.2022_

Date, Signature

Dipl.-Ing. (FH) Robert Matawa

Lead Engineer Testing HAD Business Unit Automotive

Informationen zum Datenschutz und der Verarbeitung Ihrer personenbezogenen Daten finden Sie unter www.tuvsud.com/datenschutz-mobility.

Sitz: Stuttgart Amtsgericht Stuttgart HRB 18 513 USt-IdNr. DE177565595 Informationen gemäß § 2 Abs. 1 DL-InfoV unter www.tuvsud.com/impressum Aufsichtsrat: Prof. Dr.-Ing. Axel Stepken (Vors.) Geschäftsführung: Patrick Fruth (Sprecher), Axel Bischopink, MBA M.A. Stephan Jacoby

Telefon: +49 89 32950-0 www.tuvsud.com/de-mobility TÜV SÜD Auto Service GmbH Daimlerstraße 13 85748 Garching Deutschland

Index

0.	Summary	Page 3
1.	General information / Vehicle information	Page 4
2.	Blind Spot Information Dynamic Test	Page 5
2.1.	Overview (according to Chapter 6.5 of R151)	Page 5
2.2.	Test Run Validation	Page 6
2.3.	System Performance	Page 6
3.	Blind Spot Information Static Test	Page 8
3.1.	Overview (according to Chapter 6.6 of R151)	Page 8
3.2.	Test Run Validation	Page 8
3.3.	System Performance	Page 8
Annex A	Abbreviation list	Page 9
Annex B	List of the measurement equipment used	Page 10
Annex B	End of document	Page 11

TÜV SÜD tested the Mobileye Systems:

	Hardware:	Software:	
System 1 under	Camera 1: Shield + 52 degree look back	Camera 1: AWS4_4.18.11_3.4.1_0.1	
Test (Yellow):	Camera 2: Shield + 150-degree look front	Camera 2: AWS4_4.20.5_RC7_v8.2.24	
System 2 under	Camera 1: Shield + 150-degree BSIS	Camera 1: AWS4_4.20.5_RC7_v8.2.24	
Test (White):	Camera 2: Shield + 150-degree MOIS	Camera 2: AWS4_4.20.5_RC7_v8.2.24	

according to the version of UN-ECE R151, ECE/TRANS/505/Rev.3/Add.150 of 13.01.2020 plus Amendment 1 of 05.11.2020, Amendment 2 of 02.07.2021 and Amendment 3 of 30.08.2022, a directive to regulate the type-approval of vehicles equipped with a blind spot information system for motor vehicles.

TÜV SÜD tested the Mobileye System in a Ford Transit Mk7 using an advanced metrology system. The motion of the test vehicle was real time monitored, using an IMU/GNSS based tool chain developed to meet the requirements regarding precision for the testing of automated vehicle functions and compared to ground truth, respectively the digital map of the proving ground used during the test.

Following the test matrix in the UN-ECE R151, ECE/TRANS/505/Rev.3/Add.150 of 13.01.2020 plus Amendment 1 of 05.11.2020, Amendment 2 of 02.07.2021 and Amendment 3 of 30.08.2022, TÜV SÜD tested all paragraphs that can be applied to a Standalone Technical Unit.

Findings:

System 1 ("yellow"), adopted to the geometry of the Ford Transit Mk7 as tested by TÜV Süd

is in line with the requirements of the regulation *)

System 2 ("white"), adopted to the geometry of the Ford Transit Mk7 as tested by TÜV Süd

is potentially in line with the requirements of the regulation*) **)

*) Applicable paragraphs 6.5 and 6.6 of the regulation ECE/TRANS/505/Rev.3/Add.150 of 13.01.2020 plus Amendment 1 of 05.11.2020, Amendment 2 of 02.07.2021 and Amendment 3 of 30.08.2022.

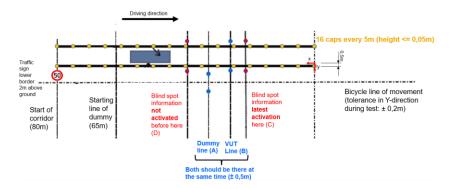
**) System 2 ("white") showed nonconformities in single tests which could be sorted out by the Mobileye Team on site by system adjustments. System 2 can meet the requirements in an OEM setup in case Mobileye conducts proper application and set up work.

1. General information / Vehicle information

Test date:	01.08.2022 to 05.08.2022
Test track/Route:	Proving ground Airport, Mnichovo Hradiště, CZ
Weather	Partly cloudy and sunny, dry
conditions:	
Air temperature:	25 to 35°C
Road surface	Concrete
material:	

Vehicle:	Ford Transit Mk7
System 1	Camera 1: Shield + 52 degree look back
Hardware:	Camera 2: Shield + 150-degree look front
System 1	Camera 1: AWS4_4.18.11_3.4.1_0.1
Software:	Camera 2: AWS4_4.20.5_RC7_v8.2.24
System 2	Camera 1: Shield + 150-degree BSIS
Hardware:	Camera 2: Shield + 150-degree MOIS
System 2	Camera 1: AWS4_4.20.5_RC7_v8.2.24
Software:	Camera 2: AWS4_4.20.5_RC7_v8.2.24

dimensions:							
4	Fahrzeuglänge	6.704					
E	B Fahrzeugbreite mit Spiegeln	2.474	J	Hecktür Öffnungshöhe	1.887		
_	Fahrzeugbreite mit angeklappten Spiegeln	2.112	к	Maximale Laderaumlänge am Boden	4.217/		
_	Fahrzeugbreite ohne Spiegel (Einzelbereifung)	2.059		(ohne/mit Vinylboden "Easy Clean") Maximale Laderaumlänge in 1,2m Höhe	4.168		
	Fahrzeugbreite ohne Spiegel (Zwillingsbereifung)	2.126	L	Maximale Laderaumbreite	1.784		
	Fahrzeughöhe*	2.778- 2.680	м	Laderaum zwischen Radhäusern (Einzelbereifung)	1.392		
	Radstand	3.750		Laderaum zwischen Radhäusern	1.154		
	Überhang vorn	1.023		(Zwillingsbereifung) Maximale Laderaumhöhe	1.1.74		
 E				Maximale Laderaumhöhe	2 0 2 5		
E F		1.931	N		2.025		
	Überhang hinten Schiebetür Öffnungsweite	1.931 1.300	N 0	Beladehöhe*	2.025 677- 608		
F	Überhang hinten Schiebetür Öffnungsweite				677-		



2. Blind Spot Information Dynamic Test

2.1. Overview (according to Chapter 6.5 of R151)

Seven Tests where a bicycle target moves along a parallel line to the vehicle under test (VUT).

The area of focus on the right side of the vehicle.

The point of interest [POI] are as follows:

- VUT: Most front right
- Bicycle: Most front of centerline and 250mm to the lef

1st Remark: As permitted by the regulation, the starting point of the dummy was moved 5m backwards (70m). Therefore, the corridor was extended to 85m. (See 6.5.6 of R151)

2nd Remark: In the original table (R151 Appendix 1 Table 1) there is an error for test case 2 for the value of d_d. According to the formulas of R151 Annex 3 this value was changed from to 32,1m.

Following tests were performed to evaluate the systems performance.

Test Name	2_1	2_2	2_3	2_4	2_5	2_6	2_7
v _{Bicycle} [km/h]	20	20	20	10	10	20	20
v _{Truck} [km/h]	10	10	20	20	10	10	10
d _{Lateral} [m]	1.25	1.25	1.25	4.25	4.25	4.25	4.25
d _a [m]	44.4	44.4	44.4	22.2	22.2	44.4	44.4
d _b [m]	15.8	22.0	38.3	43.5	19.8	14.7	17.7
d _c [m]	15.0	15.0	38.3 (15.0)	15.0	19.8 (15.0)	15.0	15.0
d _d [m]	26.1	32.3 (32.1)	65 (37.2)	43.2	65 (32.1)	26.1	29.1

Table 1Based on regulation document ***)

***) The table reflects the values from the regulation of 13.01.2020. The values in brackets are the corrected values calculated by correctly applying the indicated formulas, since no single exception can be found to explain the values in the table.

2.2. Test Run Validation

This table shows the validation check of each test run.

Run	2_1_15	2_2_4	2_3_7	2_4_1	2_5_1	2_6_13	2_7_2
SyncX Truck [m]	16.29	22.34	37.92	43.89	19.43	14.95	17.64
SyncX Dummy [m]	44.43	44.44	44.26	22.24	22.36	44.17	44.85
Sync	OK	OK	OK	OK	OK	OK	OK
Speed Truck	OK	OK	OK	OK	OK	OK	OK
Speed Dummy	OK	OK	OK	OK	OK	OK	OK
Lateral Displac- ement Dummy	OK	OK	OK	OK	OK	OK	OK
Valid	Yes	Yes	Yes	Yes	Yes	Yes	Yes

2.3. System Performance

The results of the tests are shown in the table below.

Run	2_1_15	2_2_4	2_3_7	2_4_1	2_5_1	2_6_13	2_7_2
System 1 (Yellow) meets requirements	Yes	Yes	Yes	Yes	Yes	Yes	Yes
System 2 (White) meets requirements	No1,2	Yes	Yes	Yes	Yes	No1,2	Yes

1: Information signal too late. (After truck's reference point is at 15m)

2: Testing acc. to regulation rated as not passed. The nonconformity was addressed by the Mobileye Team on site by readjusting the system.

System 1 has passed the verification. System 2 has not passed the verification.

After the test campain, Mobileye reconfigured the software and failed tests were repeated.

Run	3_1_X	3_2_X	3_3_X	3_4_X	3_5_X	3_6_X	3_7_X
System 2 (White) can meet the requirements after reconfiguration	Yes	/	/	/	/	Yes	/

Mobileye demonstrated the performance of System 2 in several testruns after the initial testcampain to the satisfaction of the TÜV Süd experts. TÜV Süd is convinced, that both systems 1 and 2 can fulfil the requirements of the regulation including the amendments in an OEM setting.

On request of TÜV Süd, Mobileye made the following statement after having been asked for reasons behind the initial test result for system 2 (white system):

MOBILEYE WARNINGS STRATEGIES FOR WHITE SYSTEM

Based on the regulation the Dc point are described as a step function when:

- Vehicle speed lower of 5 km/h the Dc should be 2 m or TTC= 1.4 sec
- Vehicle speed lower of 10 km/h but higher of 5 Km/h the Dc should be 5 m
- Vehicle speed higher of 10 km/h but lower of 25 km/h the Dc should be 15 m

- Vehicle speed higher of 25 km/h the Dc should be 15+(vehicle speed-25) *0.82

Hysteresis

To make the system more understandable for the driver Mobileye implement different layer of warnings based on vehicle speed.

The resulted Dc based on the regulation around the 10km/h can be change by 300%, this case can confuse the driver!

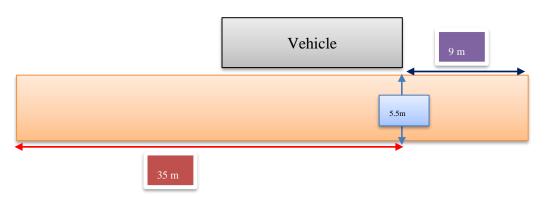
Therefore, to make the system more robust for the driver perspective we implement a hysteresis function, that mitigate the fluctuation in Dc. This is done by detecting whether the driver is accelerating or decelerating.

Warnings in driving straight scenario

To make the warning efficient as possible in road situation we decide to create a warning based on Last point of information with a tolerance of 10% before the LPI and on the longitudinal distance and 1 % on the lateral separation (max of 4.30m).

When the vehicle drive straight Mobileye provide an information warning (yellow) when the maximum separation are 4.25 meters, and the longitudinal warnings are based on Dc and speed.

Warning in turning manoeuvre scenario


If turnings was detected, we define 2 new warnings:

- 1- Information warnings (yellow) when the lateral septation is 6 m but the longitudinal is vehicle length +50%
- 2- Imminent warnings (red alert) when we calculate if the impact point can be on the side of the vehicle when TTC is up to 3 sec

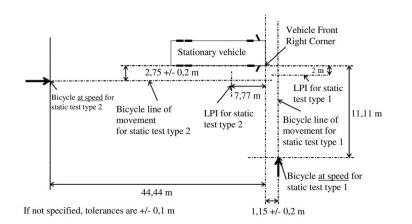
Mobileye Warnings strategies for yellow system

The strategies of this system were to create an information warning:

- When driving speed is higher of 5 km/h the warning is provided if the VRU is positioned in within the boundaries of the area defined as:
 - \circ 9 m front of the corner vehicle
 - 35 meters behind the corner of the vehicle
 - Lateral separation up to 5.5 meters.

• When driving speed is lower of 5 km/h - the warnings are provided according to the statistic test.

Test Report No.: 76123843-3 - UN-ECE R151 of 13.01.2020



3. Blind Spot Information Static Test

3.1. Overview (according to Chapter 6.6 of R151)

Two tests:

- 1. a bicycle target moves along a parallel line to the VUT
- 2. crosses in front of the vehicle under test

The point of interest [POI] are as follows:

- VUT: Most front right
- Bicycle: Most front of centerline (for crossing) and most front of centerline and 250mm to the left (for moving parallel to VUT)

The speed of the bicycle when moving along a parallel line to the VUT is 20km/h. The speed of the bicycle when crossing in front of the VUT is 5km/h.

3.2. Test Run Validation

This table shows the validation check of each test run.

Run	3_3	4_1
Dummy Speed	ОК	OK
Lateral Displacement Dummy	OK	OK

3.3. System Performance

The results of the tests are shown in the table below.

Run	3_3	4_1
System 1 (Yellow) meets requirements	Yes	Yes
System 2 (White) meets requirements	Yes	Yes

System 1 has passed the verification. System 2 has passed the verification.

Page [9]

Add value. Inspire trust.

Annex A

Abbreviation list

- MOIS Moving Off Information System
- LPI Last Point of Interest
- POI Point of Interest
- VUT Vehicle Under Test

Annex B

List of the measurement equipment used

1. iMAR iREF-GNSS-PRO base station

- Providing the reference position
- Positioned 1x on the proving ground -

2. SATELLINE-3AS Serial Modem

- Sending or receiving the correction data for the RTK mode -
- -Used 1x at the GNSS base station to transmit correction data
- -Used in VUT/VRU to receive correction data for the positioning systems

3. Mikrotik Metal 52 AC AP WLAN Mesh Network

- Provide a network on the proving ground to transfer data between vehicles in real-time (position)
- Used in VUT/VRU and several devices on the proving ground to ensure communication coverage during the tests
- 4. iMAR iNAT-FSSG-1 Fibre-Optic-Inertial-Measurement-Unit
 - High precision, dynamic fiber gyro position measurement system with 3-axis acceleration sensors and GNSS support
 - Used in VUT for permanent position recording -
- 5. 4active systems VRU targets
 - Child pedestrian articulated (ISO 19206-2:2018)
 - Bicycle pedestrian articulated- (ISO (CD) 19206-4) -

Page [10]

Add value. Inspire trust

- 6. ABD SP05-i7-Flex-0
 - Used in VUT for synchronization with VRU
- 7. ABD MKII GST
 - Used to mount the VRU-Dummies and move them on the proving ground
- 8. ABD SP7004-i4-Synchro
 - Used to sync the activities of dynamic objects on the proving ground
- 9. ABD RC Controller Software
 - Used to control the ABD-equipment

10. IMAR iXCOM-CMD Software

- Used to control the iMAR-equipment

11. DEWESOFT Sirius / Krypton

- Used to record digital / analog channels in time and frequency domain
- Used to prepare, execute tests and postprocess data

Page [11]